
cpik

C compiler for PIC c©-18 devices

Version 0.7.3

Alain Gibaud
alain.gibaud@free.fr

(Documentation: rev A)

October 29, 2013

Contents

1 Introduction 5

2 What is new in version 0.7.3 ? 5

3 What is new in version 0.7.2 ? 5

4 What is new in version 0.7.1 ? 6

5 What is new in version 0.6.0 ? 6

6 The �philosophy� behind cpik 8

7 A very special feature 8

8 Installation of cpik 9

8.1 Manual build . 10

8.2 Build using qmake . 10

8.3 cpik under Windows . 10

9 Command syntax 11

9.1 Compilation . 11

9.2 Link . 11

9.3 Final assembly and jump optimizer . 12

9.4 Pragmas . 13

9.4.1 #pragma processor device name . 13

9.4.2 #pragma CONFIGxy value (Deprecated) 13

9.4.3 #pragma config keyword=symbol,keyword=symbol,.. 13

9.4.4 #pragma IDLOCx value . 14

1

9.4.5 #pragma saved regs register,register,register, 14

9.4.6 #pragma fast stack value . 14

10 Support of C language on PIC-18 architecture 16

10.1 Stacks . 16

10.2 Memory layout . 16

10.3 Register usage . 17

10.4 Computation model . 17

10.5 Function calling conventions . 18

10.6 Stack frame allocation and interrupts . 19

10.7 Optimizations . 19

10.8 Data in ROM . 21

10.8.1 Creating a block of data in ROM . 21

10.8.2 Passing immediate ROM data to a subroutine 21

10.8.3 Passing ROM data to a subroutine with a pointer to ROM 23

10.8.4 Accessing data in ROM with a ROM accessor 24

11 Features 25

11.1 Preprocessor . 25

11.2 Data types . 25

11.2.1 Numeric data types . 25

11.2.2 ANSI types . 25

11.2.3 void type . 26

11.2.4 Pointers . 26

11.2.5 Type safety . 26

11.2.6 Cast and type promotion . 26

11.2.7 const qualifier . 26

11.3 Data structuration . 27

11.3.1 Array . 27

11.3.2 Struct and Union . 27

11.4 Symbolic constants . 27

11.5 Storage classes . 28

11.6 Static data initialization . 28

11.7 Non static data initialization . 28

11.8 Scope control . 29

11.9 Address allocation . 29

11.10Instructions . 31

11.11Operators . 31

11.12Extensions . 31

2

11.12.1 Binary constants . 31

11.12.2 Digit separator . 31

11.12.3 Assembler code . 31

11.12.4 Interrupt service routines . 32

11.12.5 Why and how to write interruptible code 33

11.12.6 Disabling and enabling interrupts . 33

11.12.7 Explicit bit fields . 33

12 Hints and tips 35

12.1 Access to 16 bit SFR . 35

12.2 Access to 16 bit SFR - second part of the story . 35

12.3 How to initialize EEPROM data . 35

12.4 Use struct to increase modularity . 36

12.5 Do not use uppercase only symbols . 36

12.6 How to write efficent code . 37

13 Headers 38

13.1 device/p18xxxxx.h . 38

13.2 sys/types.h . 39

13.3 macro.h . 39

13.4 pin.h . 40

13.5 stdarg.h . 40

13.6 float.h . 40

13.7 assert.h . 41

14 Libraries 42

14.1 standard IO library . 42

14.1.1 IO redirection . 42

14.1.2 output functions . 42

14.1.3 Conversion specifiers supported by the printf() family 44

14.1.4 input . 44

14.1.5 Conversion specifiers supported by the scanf() family 45

14.2 Standard math library . 46

14.2.1 Trigonometric functions . 46

14.2.2 Hyperbolic functions . 46

14.2.3 Exponential, logarithmic and power functions 46

14.2.4 Nearest integer, absolute value, and remainder functions 47

14.3 Standard stdlib library . 47

14.3.1 System . 47

14.3.2 Character processing . 47

3

14.3.3 Conversions to/from strings . 47

14.4 rs232 . 47

14.5 LCD . 48

14.6 AD conversion . 50

14.7 EEPROM read/write . 50

14.8 Timer 0 . 50

15 Source library structure 52

16 Needed software 54

17 Contributors 54

18 Credits 54

19 How to contribute to the cpik project ? 54

19.1 Feedbacks and suggestions . 54

19.2 Bug reports . 55

19.3 Documentation . 55

19.4 Libraries . 55

20 inc2h-v3 56

20.1 What is inc2h-v3 ? . 56

20.2 How to build inc2h-v3 ? . 56

20.3 Command summary . 56

4

1 Introduction

cpik is an ANSI-C compiler for Microchip PIC 18 microcontrollers. It is a personnal project
developped on my spare time.

2 What is new in version 0.7.3 ?

1. The asm () instruction has been improved.
In previous versions, assembler instructions generated from asm () were not able to change
the stack pointer FSR0, because it prevented the compiler to access the local variables prop-
erly. This limitation is removed, allowing the programmer to insert a more sophisticated
assembler code. See section 11.12.3 for details.

2. New pragma to specify the registers to save in an Interrupt Service Routine
This pragma makes the SAVE REGISTERS and RESTORE REGISTERS macros obsolete. Advan-
tages of this new way to save registers are numerous. Full explanations in section 11.12.4.

3. Reservation of stack space
The code used for stack space allocation (used for function parameters or local variables) has
been improved. This improvement was necessary for ISR that use more than 8 bytes of local
variables. This topic is very important to understand if you use ISR routines. Please refer
to the section 10.6 for details.

4. Bug fixes
Two bugs, discovered and analyzed by Jon Hilt (thanks!) have been fixed. One of them
affected the compiler itself, and the second one the Run Time Library.

3 What is new in version 0.7.2 ?

1. Support for CONFIG directive
The old �_CONFIGxy value� assembler directive was deprecated for several years, but was
still supported by gpasm with a warning message. Unfortunately, the .inc files coming with
new PIC18 devices don’t define the CONFIGxy symbols anymore, so the _CONFIG directive
cannot be used for these devices.

This is why cpik now offers a new pragma that allows to use the new CONFIG directive :

#pragma config key=symbol,...

Please refer to the section 9.4.3 for details.

Note that the new pragma is also supported by pikdev 1.4, the new version of my IDE.

2. New supported devices
cpik now supports all the PIC18 devices that are supported by the new gputils 1.0.0

suite. It means that many new device-headers are provided.

3. Support for devices with SFR out of access bank
Some (rare) new devices contain Special Function Registers that cannot be reached in access
bank1. Such devices did not exist when cpik has been designed, so the generated code was
wrong for them. The fix for this issue has been to change the firstsfr pragma in device-
header files. A new version of the inc2h utility has been written for this purpose. See section
20 for details.

4. Bug fix in structure support
The code generated for some access to structure members was wrong, due to a missing pair
of parentheses.

1for example: 18F25K22

5

5. Other minor bug fixes

Thank you to Jon Hilt who has reported the two previous problems, and fixed one of them.

4 What is new in version 0.7.1 ?

1. Full support for bit-fields
Bit fields are now supported in the standard way.

2. New headers files
A new header file is now provided for each pic18 device. These headers are compatible with
Microchip’s headers, but are not a copy of them.

3. New inc2h-v2 utility
This is a new version of the previous inc2h that is able to build the headers files from
Microchip’s �.inc� files.

4. Explicit bit-fields
This feature is an extension of the standard that allows to slice any 8 bit variable in bit fields.

5. Support for the const keyword
const is now supported as specified by the ANSI standard. Because the compiler is now
more strict about constness, old codes may have to be slighly modified.

6. Minor bug fixes

5 What is new in version 0.6.0 ?

1. Full support for 32 bit floating point arithmetic.
This implementation is compliant with the IEEE-754 standard on floating point representa-
tion, but NAN and INF are not supported. This design choice has been made to reduce the
size of code. The core floating-point library2 has been carfully written in assembly language,
so this implementation is likely to be fast. The FP library is provided as a separate library
(float.slb).

2. Support for IO on floating point data
The printf and scanf have been updated for this purpose and new format spécifications
(%e and %f with user-selectable precision) have been introduced . Like for 32 bit integers,
this support must be enabled to be active, so people who do not use FP arithmetic will not
be penalized. New IO functions for floating point are also provided.

3. Math library
This implementation of the math library is written in C and provides 22 usual functions for
floating point calculation.

4. Standard library
This is a first implementation of stdlib that contains 10 usual functions.

5. Functions with variable argument-list
This a fully compliant implementation of the ANSI standard about functions with variable
argument lists, using the �...� syntax. The standard header (stdarg.h) provides the
necessary va_xxx macros.

6. errno support
The unix low-level mechanism for reporting errors during math or IO operation is supported,
and the standard errno.h header is provided.

2Basic operators and conversion routines.

6

7. New command line option
The traditional �-D� switch allows to pass macro definitions to the preprocessor.

8. Minor bug fixes

7

6 The �philosophy� behind cpik

My idea was to develop a compiler as simple as possible but conformant to the ANSI specifications.
This is a huge work for one developer (with many other activities), so I had to decide what is
important and what is not. My underlaying idea is the following: it is better to drop a feature
than to incompletely or inexactly implement it.

For example, I initially chose to suppress the support for bit fields because bit fields manipulations
can be easily performed using standard C operators such as &, |, ^ and so on.

I also dropped the switch statement, because it is always possible to replace this statement with
cascaded if(s). The resulting code is generally less efficient, but works. Finally, this statement is
supported since V0.5.3.

The first version of cpik (V0.2) did not recognize the typedef instruction, and had no support
for structs or unions. typdef has been implemented in V0.3, and structures/unions in V0.4. 32
bit integer arithmetic is supported since V0.5.

Floating point support exists since version V0.6.0, and comes with a very decent math library
including trigonometric and logarithmic functions.

Support for bit fields exists since V0.7.0., so support for the ANSI-C standard is now almost
complete. cpik is well supported by pikdev (my IDE for pic processors) so the pikdev/cpik

couple is really very handy and pleasant to use.

Volunteers are welcome for any help, including tests, benchmarking, documentation and libraries
writing. Please see the section �How to contribute to the cpik project ?� for details.

This compiler is written in C++. Any feedbacks concerning bugs, feature requests or criticisms
can be addressed to Alain Gibaud (alain.gibaud@free.fr).

7 A very special feature

cpik works in a unusual way: unlike other compilers, it does not produce ordinary assembler code
but source libraries.

A source library looks like a PIC 18 asm source file, with .slb extension. This file can be processed
by an assembler (such as mpasm or gpasm) but contains special comments that are intended to be
used as directives by the linker. This linker is included in cpik itself, so the cpik command can be
used for both compilation and link tasks.

The important point is that cpik linker works at assembly source code level: it picks needed ”mod-
ules” from source libraries and copies them in a single output file. In other words, cpik performs
linking before assembly stage (In contrast, most linkers work from the object code generated by
an assembler).

The file generated by the linker is easy to verify manually, and I suppose (and hope) that advanced
users will examine it and will send feedbacks about the code.

This unusual approach presents for me several advantages:

• Any source library is a simple text file, so it can be manually written in assembly language,
using a standard text editor (this point is important to bootstrap a totally new development
environment). For example, the LCD library has been developped from scratch with a text
editor as unique tool, and has been used to support the very first program3 compiled with
cpik ever executed (see figure 1).

• source libraries do not depend on any object/library format, and/or obscure, potentially
undocumented and volatile format versions.

3Believe it or not, this program (a simple for loop) worked successfully at the first execution. To be honest, this
execution has been preceded by many manual check of the generated code.

8

Figure 1: Result of the very first program compiled by cpik ever executed

• the final executable code (ie: hex file) can be generated by a very simple assembler without
any advanced feature (The target assembler is currently gpasm running in absolute mode -
ie: without program sections).

• any output from the compiler is potentially a library, so there is no more differences between
object files and libraries. As a consequence, we do not need any librarian utility.

• the linking process is globally very simple and does not increase significantly the complex-
ity/size of cpik executable.

• this design has proven its flexibility for the implementation of support for data located in
ROM, or jumps optimisations

• symbolic calculations that depend on the location of entities in memory can be deferred to
assembly stage.

In fact, the �source library� approach might be rather slow, but, as microcontrollers applications
are not huge, your computer will build ready-to-burn hex files at speed of light.

8 Installation of cpik

Notes:

• In the following, <version> is a 3-digit string corresponding to the version number of cpik
(eg: 060 for V0.6.0).

• The cpik archive is supposed to be extracted.

8.1 Manual build

Although is is not my preferred option, it is possible to build cpik manually:

9

1. Compile each .cpp file separatley, using the �g++ -Wall -O2 <filename>.cpp� command

2. Link with �g++ -o cpik<version> <all the .o files>�

3. �su root�

4. Copy the cpik<version> executable to /usr/bin/

5. Copy the directory 0.6.0 (use here the proper version number) to /usr/share/cpik

8.2 Build using qmake

qmake is the build tool that comes with Qt. You can download the complete Qt toolkit at the
address http://qt-project.org/, but it is certainly available as a package with your Linux
distribution.

1. qmake -o Makefile cpik<version>.pro

2. make

3. su root

4. make install

You can install cpik in a non-standard directory using the command

qmake PREFIX=<abs-dir> -o Makefile cpik<version>.pro

where <abs-dir> is an absolute path to the directory where you plan to install cpik. Be certain
that cpik will not work if you use a relative path.

This option is provided for very special situations, and my advice is to avoid it.

8.3 cpik under Windows

cpik can be built under Windows, using the qmake tool and the gcc for windows toolchain. No
installation procedure is provided but you can use the following instructions to install to the
C:\cpik directory:

1. qmake -o Makefile cpik<version>.pro

2. make

3. Copy the directory 0.6.0 to C:\cpik

4. Create a C:\cpik\bin directory

5. Copy the cpik<version> executable to C:\cpik\bin

Do not copy the executable to any other place, because cpik uses its own location to find the
files it needs.

10

9 Command syntax

The cpik command can be used for both compilation or linking tasks, exactly like the gcc front
end. However, cpik is not a frontend and really performs these two tasks. Since V0.5.3, cpik can
also directly generate the final .hex file, and is able to optimize jumps after the linking process.

9.1 Compilation

cpik -c [-v] [-Dmacro[=value]][-o output_file] [-I path]

[-p device] [-d<value>] input_file

-v : prints version number, then exits immediatly.

-o output_file : Specifies the output (source library) file name. By default, this name is
generated from the source file name by appending .slb to the extensionless input file name.

-Dmacro[=value] : specifies a macro definition that is passed to the cpp preprocessor. Notice
that there is no white space after �-D�

-I path : specifies the path to include (.h) files. This option follows the traditionnal behaviour
of Unix C compilers. You can specify any number of include path, and they will be searched in
the order of the -I options. As usual, use ”-I .” to specify the current directory. If your header
file is located in the default system directory (ie: /usr/share/cpik/<version>/include/), do
not forget to use #include <xxx> instead of #include "xxx" in your source code. Notice that
�-I A,B,C� is an allowed shortcut for �-I A -I B -I C�.

-p device : specifies the target pic device name. device must be a valid pic 18 name like
p18xxxx. The exact name is not checked, excepted the p18 prefix. And invalid device will cause
the final assembly to fail. The target device is p18f1220 by default.

-d<value> : debug option, used for the development/debugging of the compiler itself. The value
is an integer which specify what debug information should be printed. Any number of -d options
can be used.

value meaning
-d1 print unoptimized intermediate code as comment in .slb file
-d2 print peep hole optimized intermediate code as comment in .slb file
-d4 print symbol tables with entities names and types
-d8 print internal expression trees before optimizations, without type annotation
-d16 print internal expression trees before optimizations, with type annotations
-d32 print internal expression trees after optimizations, without type annotation
-d64 print internal expression trees after optimizations, with type annotations

The usage of the -d option is never useful for normal operations with cpik. Produced outputs
are hard to interpret for non developers.

input_file : specifies the source file name, with .c extension.

This command cannot be used to compile more than to one source file in a single invocation.

9.2 Link

cpik [-v] [-o output_file] [-L path] [-p device] input_file [input_file..]

-v : prints version number, then exit immediately.

-o output_file : specifies the output file name. By default, this name is a.asm. This file can
be immediately processed by the assembler and does not require any additionnal support.

11

-L path : specifies the path to libraries (.slb) files. This option follows the traditionnal be-
haviour of Unix C linkers. You can specify any number of lib path, and they will be searched in the
order of -L options. The default include path always contains /usr/share/cpik/<version>/lib/
that is searched in last position. Note that �-L path1,path2� is a shortcut for �-L path1 -L

path2�

-p device : specifies the target pic device name. device must be a valid pic 18 name like
p18xxxx. An invalid device will cause the final assembly to fail. By default, the selected device is
p18f1220.

input_file [input_file..] : any number of .slb files. The library
/usr/share/cpik/<version>/lib/rtl.slb (run time library) contains low-level modules and is
automatically referenced as the last library. Please do not reference this library explicitly because
it will change the scanning order of libraries, and might cause undesirable effects.

9.3 Final assembly and jump optimizer

cpik -a [-d<value>] [-o output_hex_file] -p device

[-A gpasm_executable_path] input_asm_file

The gpasm assembler can be invoked directly from cpik. This stage builds the final .hex file,
from the .asm file generated by the linker. During this step, long jumps are replaced by short
jumps whenever possible. Therefore, the resulting code is shorter and faster than the code directly
generated by gpasm.

-A gpasm executable : specify the absolute path to the gpasm tool. This option is generally
not needed but, when used, the specified name must contain the name of the executable itself (eg:
/a/b/gpasm instead of /a/b/)

-p device : specifies the target pic device name. device must be a valid pic 18 name like
p18xxxx. An invalid device will cause the final assembly to fail. By default, the selected device is
p18f1220. This specification is not optional because it allows cpik to check the program against
an eventual memory overflow.

-o output_hex_file : specify the .hex file name. The default name is <input_asm_file>.hex.

-d<value> : ask optimizer to print debug informations when value=2 or statistics on how
many words are saved when value=1.

12

9.4 Pragmas

Using pragmas is a standard way to do non-standard things in C language. Pragmas are often
used to switch on/off a special feature of the compiler, in a more handy way than the command
line. For this reason, they can be seen as an extension of the command line.

9.4.1 #pragma processor device name

This pragma has the same effect as the -p option in the link command. device name, must be
a string like p18f2550. A program containing more than one processor pragma with different
device names will have an unpredictable behaviour.

9.4.2 #pragma CONFIGxy value (Deprecated)

Note: This pragma is deprecated, but still supported. Please use the �config� pragma, as
described in the next section.

This pragma allows to specify the device configuration bits.

x must be a configuration register number (1 ≤ x ≤ 7) and y must be either H or L.

Config bits values are not processed by compiler, but directly passed to assembler, so you can use
here constants not defined at C level, but defined in the <processor>.inc file. For this reason,
you cannot use here the ’_’ character as field separator.

A program containing more than one _CONFIGxy pragma with different values will have an unpre-
dictable behaviour.

9.4.3 #pragma config keyword=symbol,keyword=symbol,..

This pragma allows to generate a standard CONFIG directive in the output code. It replaces the
previous _CONFIGxy directive. I recommend to switch to the new pragma, because some devices
cannot be configured with the old _CONFIGxy directive. Moreover, the old directive provokes a
warning from gpasm.

for example,

#pragma _CONFIG2L 0x0A

#pragma _CONFIG2H 0x10

should be replaced with

#pragma config WDTPS=256,WDT=OFF,BORV=27,BOR=ON,PWRT=ON

You can uses any number of config pragmas. For example, the previous pragma could be replaced
with

#pragma config WDTPS=256,WDT=OFF

#pragma config BORV=27,BOR=ON,PWRT=ON

This pragma can be automatically generated by the config word generator of PiKdev V1.4. How-
ever, you can write the config parameters by yourself. In this case, you will have to refer to the
device documentation. Another option is to read the .inc file specific to your device to know the
available keywords and constants.

13

9.4.4 #pragma IDLOCx value

This pragma allows to specify ID data.

x is the id location number (0 ≤ x ≤ 7).

Values are directly passed to assembler, so you can use here constants not defined at C level.

A program containing more than one _IDLOCx pragma with different values will have an unpre-
dictable behavior.

9.4.5 #pragma saved regs register,register,register, ..

Since version 0.7.3, the SAVE REGS and RESTORE REGS macro are suppressed. These macros were
used to save and restore the data modified by an Interrupt Service Routine on to the stack.
However, this kind of context saving had two disadvantages:

1. Data was saved in the stack frame of the function, so the available space on the stack was
reduced,

2. because data was saved after the local variables, these variables were not properly managed
by the compiler. It was indeed a very bad feature, because the code of ISRs was obliged to
use only global variables.

With the new pragma, registers are saved before the stack frame, so the two previous defaults
disappear.

The following saved regs pragma is provided in the <interrupt.h> header:

#pragma saved_regs R0,R0+1,R1,R1+1,R2,R2+1,R3,R3+1,PRODL,PRODH

You can redefine this pragma just before an ISR source code if you are not happy with the
standard registers list. Note that doing such a redefinition does not add new registers, but replace
the previous ones. It means that you can easily turn off all the registers savings with:

#pragma saved_regs

Also remember that the registers used by FP calculation are not saved if you use the standard
registers list, so if an ISR performs FP calculations, you will have to use this pragma4.

The register specification can be any expression or address that refers to a valid location in
memory because data is pushed with a movff instruction, that can access any page. However,
never use this pragma to save any interrupt control registers (INTCONx or PIRx) because, as stated
in the documentation, they cannot be manipulated with the movff instruction.

9.4.6 #pragma fast stack value

This pragma allows to control the technique used for stack allocation in functions. The default
technique is to use a fast stack allocation. However, this technique cannot be used when the
function is called from an Interrupt Service Routine (ISR), so it must be manually disabled in this
specific case. (ie: #pragma fast_stack 0). The standard technique must be re-enabled after the
concerned function (ie: #pragma fast_stack 1).

Note that:

• The standard stack allocation technique corresponds to #pragma fast_stack 1

4However, it is generally not a good idea to perform complex calculations in an interrupt service routine.

14

• this pragma has not effect (and is not needed) for functions that use less than 8 bytes of local
data

• this pragma has not effect (and is not needed) for ISRs

15

10 Support of C language on PIC-18 architecture

cpik generates code for PIC-18 processors running in legacy (ie: non-enhanced) mode. The PIC-
18 core is fundamentally a 8 bit processor with 16 bit pointers and distinct program/data spaces.
From the C programmer point of view, up to 64K bytes of program space and 64K bytes of data
space are available. Pointer generally points to data space, but pointer to function points to
program space. Programs can be larger than 64K bytes (when the device has enough memory),
but pointers to functions can only reach the lower 64 KB of memory. This is not an issue because
it is easy to force the addresses of target functions to be less than 0xFFFF.

cpik has been designed to produce a stack-based code. This kind of code is easy to understand,
robust and potentially reentrant without any trick. Interruptions are easy to support (see section
11.12.4 for details). Thanks to auto-incremented and indirect addressing modes, this design leads
to efficient code.

The memory model is flat and covers the totality of program/data spaces. There is no banks,
”small” stacks, ”far” pointers or other tricky ways to save memory but to confuse everybody.

10.1 Stacks

The code generated by cpik uses two stacks:

• hardware return stack (31 levels):

This stack is part of the PIC-18 architecture. It is only used to save the return addresses
before subroutines calls. 31 levels of nested calls are generally largely sufficient for most
applications.

However, recursive routines may provoke overflows of the return stack, this point being under
the responsability of the programmer.

• software data stack:

This stack is used to store local variables, function parameters and temporary results during
expression evaluation. Due to the availability of address registers FSRx, and indirect, auto-
incremented, and indexed addressing mode, the stack manipulation is very efficient. FSR0 is
used as the software stack pointer.

The stack grows upward and is used in a pre-incremented manner: pushing a byte onto the
stack uses a movxx source,PREINC0 instruction. Symetrically, a movxx POSTDEC0,dest is
used to pop the data back.

10.2 Memory layout

The current memory layout used by cpik is the following5:

Name Addresses Size Usage
Soft Stack [GG+1->TT] software stack, grows upward to top of memory
Globals [PP+1->GG] global variables

Scratch [22->PP] SCRATCH SIZE-20 returned value area
FP aux [14-21] 8 auxiliary zone for FP routines
Registers [2->13] 12 R0,R1,R2,R3,R4,R5 pseudo-registers
C18_errno [1->1] 1 reserved by libraries
IT mask [0->0] 1 reserved by RTL

5This layout has changed from V0.5.3 to V0.6.0

16

• Addresses from 0 to 21 (22 bytes) are reserved for the run-time library. The Register zone
(20 bytes) is used for both integer and floating point calculation, and is also used to store the
values returned by functions. Because a function can return more then 20 bytes, the Register
zone can be extended by the Scratch zone. The size of this area can be ajusted by editing
the prolog file /usr/share/cpik/<version>/lib/cpik.prolog

The default size specified in this file is sufficient to handle functions returning 40 byte long
structures. If you are not happy with this size, just change the SCRATCH SIZE definition to
the value you want. However, remember than SCRATCH SIZE cannot be less than 20 bytes.

• The Globals zone is used to store the static data (ie: global or static variables).

• Finally, the Soft stack begins at the end of the Globals zone and uses the remaining of the
memory.

There is currently no reserved zone to implement a heap for dynamic memory allocation (malloc(),
free()). However such a zone could be obviously implemented at the end of physical memory,
and must expand from top (high addresses) to bottom.

10.3 Register usage

cpik uses 6 16 bit pseudo-registers named R0,R1,R2,R3,R4 and R5. These registers are located in
page 0, and are efficiently accessed via Access Bank (a=0).

• W is used as a general purpose scratch register

• R0 is the 16 bit equivalent of W,

• R1 to R5 are used by the Run-time library (RTL),

• FSR0 is the software stack pointer,

• FSR1 is a general purpose address register,

• FSR2 is used for fast memory moves together with FSR1,

• PRODL and PRODH are used for arithmetics and temporaries

Of course, registers for indirect adressing, such as INDFx, PREINCx, POSTDECx, and PLUSWx are
intensively used and also accessed in Access Bank for efficiency reasons.

10.4 Computation model

• operators with 2 operands are executed with 1st operand on the stack, and 2nd one in W (8
bit) or RO (16 bit) or R0-R1 (32 bit). The result replaces the 1st operand on the stack, but
may have a different size.

• operators with 1 operand take their operand from top of stack and replace the result at the
same place.

In fact, the code generated by cpik might differ from this scheme, depending on various opti-
mizations performed by the compiler.

Due to hardware limitation, the total amount of local non static data declared in a function can’t
exceed 127 bytes. Data local to a function are formal parameters, local variables, and temporaries.

Excepted for very complex expressions, temporaries never exceed a few bytes, so, as a rule of
thumb, about 100 bytes are always available.

In the following example, 2 bytes are used for parameters u and v, and a third one is used for
storing a temporary.

17

int h(int u, int v)

{

return (u+v)/3 ;

}

Here is the result of the compilation:

C18_h

movff INDF0,PREINC0 ; push u onto the stack

movlw -2

movf PLUSW0,W,0 ; move v to W

addwf INDF0,F,0 ; replace the stacked copy of u by u+v

movlw 3

ICALL div8 ; divide top of stack data by 3

movff POSTDEC0,R0 ; pop result to R0L

return 0

Notice that the space used to store the local variables is not necessarily the sum of space needed
for each variable. For example, in the following code, j and z are stored at the same address, so
only 2 bytes are used on the stack to store k, j and z.

int func2(int k)

{

if(k > 27)

{

int j = 3 ;

k += j ;

}

else

{

int z = 23 ;

k += z ;

}

return k ;

}

10.5 Function calling conventions

All parameters are passed to functions on the software stack. They are stacked in reverse order (1st
parameter pushed last)6. Moreover, the stack cleaning is performed by caller : these characteristics
are common for C code because they are useful to implement functions with variable number of
parameters, such as printf7.

8 bit results are returned in R0L register, 16 bit results are returned in R0 register and 32 bit
results are returned in the R0-R1 pair.

Structures are returned in a block of memory that begins at address R0, with the same size
than the returned structure. Enough space is reserved by default for structure up to 40 bytes.
This pool can adjusted to fit you needs or the hardware requirements. See section 10.2 for details.

Here is a call of the previous function h(int u, int v):

void caller()

{

6No alignment is done during parameter passing, so data can be located at odd or even address.
7This feature will change in future versions.

18

int res, k ;

res = h(k, 25) ;

}

and the resulting code

C18_caller

movf PREINC0,F,0 ; reserve stack space

movf PREINC0,F,0 ; for k and res

movlw 25

movwf PREINC0,0 ; push param 25 onto the stack

movlw -1

movff PLUSW0,PREINC0 ; push parameter k

ICALL C18_h ; call h()

movf POSTDEC0,F,0 ; (partially) clean stack

movff R0,INDF0 ; move result to temporary

movlw -1 ; pop result to res and

movff POSTDEC0,PLUSW0 ; finish to clean stack

movf POSTDEC0,F,0

movf POSTDEC0,F,0 ; (discard local variables)

return 0

10.6 Stack frame allocation and interrupts

A stack frame is a memory block that is reserved on the stack by any function that uses local
variables. This allocation is typically done at the very beginning of the user code of the function
by simply pushing any value on to the stack. For example, a simple �clrf PREINC0,0� instruction
can be used to reserve space for one char variable.

When more data has to be pushed, the code for the stack frame allocation can become very long and
slow because one byte is reserved at a time. This is why cpik generates in this case a code that just
alter the stack pointer (FSR0) by adding to it the number of bytes needed. Unfortunately, the stack
pointer is composed of 2 separate 8 bit registers, so doing the operation needs 4 instructions. Here,
the annoying things begin. Lets suppose that an interruption occurs just during this calculation:
an ISR is triggered, but is executed with a �half-cooked� stack pointer that do not point to a
valid memory place.

In order to avoid such a situation, interruptions must be masked prior the calculation, then restored
to their previous state after it. By this way, the change of the stack pointer is made atomic (ie:
non interruptible) and no problem can occur.

However, this technique cannot be used in an Interrupt Service Routine for very technical reasons,
so ISRs are automatically compiled with a specific stack frame allocation technique.

This restriction also applies to routines called by ISR. Because the compiler cannot anticipate
whether such a routine will be called by an ISR or not, this routine cannot be automatically
compiled with the proper stack management technique. This situation is very rare, but you can
avoid it by disabling the standard stack allocation for a specific routine. See section 9.4.6 for
details about the fast stack pragma.

10.7 Optimizations

cpik performs many optimizations, but not all possible optimizations. Optimizations can be
performed during code analysis, intermediate code generation, asm code generation and suprisingly
after the code generation.

19

1. NOP removal

Most expressions that have no effect are simply removed. For example i = i + 0 ; does
not produce any code.

2. Register value tracking

Value of W register is tracked whenever possible, so it is not reloaded when it contains the
proper value. This feature only concern the W register, but I plan to extend it to FSR1 register.

3. Constant folding

Most constant subexpressions are computed by the compiler, so complex expressions are
often compiled as a single constant (eg: x= (1+2*4) << 1 ;). However, a lot of constant
foldings are done by the peephole optimizer or the expression simplifier (eg: st.a.b.c = 34

; is exactly compiled like x = 34 ;)

4. Peephole optimization

Intermediate code is analyzed by grouping instructions into slices of 2, 3 or 4 items. Each
slice is compared against a library of possible simplifications or transformations. Then, the
simplified code is simplified again, and so on. This kind of optimization may lead to 25% to
30% gain.

5. Code generator optimization

This is the only phase that depends on the target architecture. Bit operations are excellent
candidates for optimization. For example, consider the following macro to reset a single bit:

#define CLRBIT(var,bit) ((var) &= ~(1 << (bit)))

so

CLRBIT(i,3) ;

is expanded as

((i) &= ~(1 << (3))) ;

which is optimally translated as:

bcf INDF0,3,0

This example is a combination of constant folding and code generator optimizations.

6. Dead code removal

cpik takes into account constants when testing boolean conditions. For example, instructions
like

if(0) { ... }

or

while(0) { ... }

do not generate any code. In the same way,

while(1) { .. }

generates a genuine infinite loop with no test, exactly like for(;;) { .. } does.

However cpik does not perform a global analysis of code, so common subexpression removal
are out of scope at this time.

7. Jumps optimization

cpik contains a special optional8 optimizer that allows to use short jumps instead of long
ones, whenever possible. This step is executed after the asm source code generation and can
reduce the memory size by 20%.

8See section 9.3

20

10.8 Data in ROM

The PIC-18 processors are based on two separate program and data spaces. Data space is RAM,
and program space is ROM. This architecture causes problem to store initialized data (such as
literals like "hello !"). Indeed, the only way to store initialized data is to place them in program
space.

In order to keep the compiler simple, cpik adds a loader routine to startup code. This routine is
automatically activated before the main() function and copies all initialized data from program
space to data space9.

As a consequence, initialized data is located in RAM during execution. This feature is necessary
when the data can be modified, but is not desirable when the data is read-only because it wastes
RAM space.

Since version 0.5.3 cpik offers several simple ways to use data located in program space. In the
following sections, program space is simply called ROM. The ROM support presented here is fully
implemented with macros and a couple of run-time routines. These macros are defined in the
rom.h header.

The support presented below is experimental because it prepares a definitive implementation based
on a __rom keyword. However, it is perfectly usable and very efficent from both time and memory
points of view.

10.8.1 Creating a block of data in ROM

The following macros allow to insert data in program space:

1. ROM TXT(text)

Insert the specified text in ROM, at the current program location. The text must be enclosed
by double quotes. The resulting block is not nul-terminated by default, so an explicit zero
must be included in the specified string when needed. (eg: ROM_TXT("my string\0") ;).
It is important to note that the text is encoded with 2 chars in each program word, so texts
with an odd number of chars are padded with a nul char (ASCII 0).

2. ROM_BYTES(data)

Insert the specified sequence of bytes in ROM. The data parameter can be any sequence of
bytes, encosed by double quotes (eg: ROM BYTES("0,1,2,0x33,5") ;). Since the parameter
of ROM BYTES is processed by the assembler, your can use any syntax recognized by the
assembler, for example a calculation on constant values (eg: ROM BYTES("’A’, ’A’+1") ;)
Like strings, a nul byte is added for padding when the number of specified bytes is odd.

3. ROM WORDS(data)

Insert the specified sequence of words (ie: 16 bit) in ROM. The data parameter can be any
sequence of numbers, enclosed with double quotes
(eg: ROM WORDS("1000,200,123, 0xFFFF") ;).

10.8.2 Passing immediate ROM data to a subroutine

The first way to access ROM data from program is to embed that data in the code itself, exactly
like the immediate operands are hard-coded in instructions. This goal can be achieved by locating
the data at the return address of the subroutine.

Since the return address can be found in the TOSL/TOSH/TOSU registers, the subroutine is able
to access the ROM data. Although it seems freestyle, this way is very handy from the end-user
point of view. For example, the LCD library provides the void lcd RIprint () ; routine that

9The loader is not included if your program does not use statically initialized data.

21

uses this type of parameter passing. As a �first step� example, the following code sends a message
to a LCD display:

lcd_RIprint_();

ROM_TXT("Hello !\0") ;

A better way to do that is to use a macro that hides the real nature of the message:

#define lcd_RIprint(txt) { lcd_RIprint_() ; ROM_TXT(txt) ; }

Finally, the following code will send the message:

lcd_RIprint("Hello !\0") ;

In this example, the ’R’ stands for ROM and the ’I’ stands for immediate.

Writing a function such as lcd_RIprint_() is not easy because it needs a clear understanding of
the PIC-18 instruction set and how the program is compiled. People interested by this point can
read the code in the file lcd.slb, that is written in assembly language. However, it is perfectly
possible to write such a function in C. For this purpose, the rom.h header provides several very
handy macros:

1. PREPARE ROM ACCESS

This macro mainly copy the TOSx registers to the TBLPTRx registers, and set bits needed
to access ROM.

2. READ ROMBYTE

Reads one byte of data from ROM. The fetched data is stored in the prodl C variable, that
is just an alias for the PRODL register. Consecutive invocations of READ ROMBYTE will read
consecutive data from ROM.

3. READ ROMWORD

Reads one word of data from ROM. The fetched data is stored in the prodhl C variable, that is
just an alias for the PRODL/PRODH pair of registers. Consecutive invocations of READ ROMWORD

will read consecutive data from ROM.

4. FINISH ROM ACCESS

Ends the transaction with ROM. The TBLPTRx registers are copied back to TOSx registers.
The macro takes care of alignment, so the address stored in TOSx, is always even. Obviously,
the use of this macro is mandatory in this context.

Here is an example of how to uses the proposed macros. This example implements a ROM version
of the following puts() routine.

void puts(char *p)

{

for(; *p ; ++p)

putchar(*p) ;

}

The first step is to define a macro for convenience.

#define RIputs(str) { RIputs_() ; ROM_TXT(str) ;}

22

The second step is to write a function that read from ROM memory every char to be printed.
The number of char can be odd or even because the FINISH ROM ACCESS macro restores a correct
parity.

void RIputs_()

{

PREPARE_ROM_ACCESS ; READ_ROMBYTE ;

while(prodl)

{

putchar(prodl) ; READ_ROMBYTE ;

}

FINISH_ROM_ACCESS ;

}

Please note an important point: all the data stored in ROM must be read. Violating this rule
will lead to execute data instead of machine code and will crash the processor.

Here is another example: this routine fetches 16 bit data from a ROM table, and displays it. In
this example, the data is preceded by a word indicating the size of the table.

#define RIputwords(list) { RIputwords_() ; ROM_WORDS(list) ; }

void RIputwords_()

{

int k ;

PREPARE_ROM_ACCESS ; READ_ROMWORD ;

for(k = prodl ; k ; --k)

{

READ_ROMWORD ;

outdec(prodhl) ; putchar(’ ’) ;

}

FINISH_ROM_ACCESS ;

}

This function is very simple to use:

RIputwords("3, 1000, 2000, 3000") ;

Notice that despite the parameter of RIputwords() is a literal, the data really stored in ROM is
a sequence of words (not a string of chars).

10.8.3 Passing ROM data to a subroutine with a pointer to ROM

In the previous section, each block of data in ROM was anonymous and the return address of the
subroutine was used a pointer to this block.

The ROM_ENTRY() macro allows to attach an identifier to a location in ROM as following:

ROM_ENTRY(hello)

{

ROM_TXT("hello guys !\0") ;

}

The hello identifier has the type ROMptr and can be passed to any routine receiving this kind of
pointer. For example, this is the case of the void lcd_Rputs(ROMptr) ; (from the LCD library).

23

void f()

{

lcd_Rputs(hello) ; // displays �hello guys !�

}

As previously, it is easy to write such a code at C level. For that purpose, the rom.h header
provides a macro ROM_POINTER that allows to declare that a ROMptr will be used to access ROM.

For example, suppose we want to implement a new version of puts() that access the character to
be printed from a ROM pointer.

void Rputs(ROMptr p)

{

ROM_POINTER(p) ;

READ_ROMBYTE ;

while(prodl)

{

putchar(prodl) ; READ_ROMBYTE ;

}

}

Not really complex, isn’t it ? But the next way to access ROM is even more simple, and more
powerful.

10.8.4 Accessing data in ROM with a ROM accessor

In the previous sections, ROM data were traversed in sequence. Using a ROM accessor, ROM data
can be traversed randomly. A ROM accessor is simply a function that mimic the behavior of an
access to array’s elements.

Five macros are available to declare a ROM accessor. For example, the ROMF_TXT macro allows to
declare a text, and the way to access it:

ROMF_TXT(atext , "whiizz !\0")

Here, atext is a ROM accessor for the specified string. It means that atext(0) returns ’w’,
atext(1) returns ’h’ , and so on. The type of atext is ROMF i8 t. The F stands for function,
because accessors are technically functions receiving an unsigned int.

Here is another flavor of the usual puts() function :

void RFputs(ROMF_i8_t p)

{

uint8_t k ;

for(k = 0 ; p(k) ; ++k)

putchar(p(k)) ;

}

The following table shows the available accessors, and their corresponding types.

accessor declaration accessor type value type example

ROMF_TXT ROMF_i8_t int8_t ROMF_TXT(a,"hello\0")

ROMF_DATA8 ROMF_i8_t int8_t ROMF_DATA8(b,"-1,2,0xFF")

ROMF_DATA8U ROMF_ui8_t uint8_t ROMF_DATA8U(c,"1,2,0xFF")

ROMF_DATA16 ROMF_i16_t int16_t ROMF_DATA16(d,"-1,0xFF34")

ROMF_DATA16U ROMF_ui16_t uint16_t ROMF_DATA16U(e,"1,12300")

24

11 Features

11.1 Preprocessor

Because cpik uses cpp (the GNU preprocessor), it is ANSI-compliant for preprocessing capabilities.

11.2 Data types

11.2.1 Numeric data types

cpik supports the following numeric data types:

cpik type representable values constant suffix

char [-128..+127] none
unsigned char [0..255] none
int [-128..+127] none
unsigned int [0..255] none
long [-32768..32767] L or l
unsigned long [0..65535] UL or ul
long long [-2147483648..2147483647] LL or ll
unsigned long long [0..4294967295] ULL or ull
float [−3.402823 × 1038..+3.402823 × 1038] optional F or f
unsigned bit field depends on field size none
signed bit field depends on field size none

Signed integers are represented in 2’s complement. Floating point support (float) is compliant
with the IEEE 754 standard. As stated by the standard, the precision is 6 or 7 decimal digit,
depending on the situation. The floating point library is fully written in assembly language, so it
is likely to be fast.

11.2.2 ANSI types

Most other PIC compilers consider the type int as a 16 bit integer. I prefer to consider it as 8 bit,
because, as stated by the C language definition the int type represents the natural integer for the
target processor. This definition guarantee to gain optimal performances from the processor when
an int is used. PIC-18 devices are based on 8 bit data registers, so I suppose that an int should
be coded on 8 bits for this kind of processor.

People who are not happy with 8 bit ints, or unsigned long long declarations, can use the stan-
dard ANSI types declared (with a typedef instruction) in the <types.h> header file as following:

cpik type ANSI type

char char_t

unsigned char uchar_t

int int8_t

unsigned int uint8_t

long int16_t

unsigned long uint16_t

unsigned long size_t

long long int32_t

unsigned long long uint32_t

25

11.2.3 void type

The void type is recognized in the traditional way.

11.2.4 Pointers

Any valid pointer can be declared.

11.2.5 Type safety

Types are carefully checked, and mixed-type pointer expressions are rejected.

11.2.6 Cast and type promotion

The cast operator allows type conversion, and type promotion is implemented, as specified by the
standard.

11.2.7 const qualifier

The const qualifier is implemented, as specified by the ANSI standard. However, text literals like
"Hello" are not considered as arrays of const char (as they should be), but as arrays of char.
This is consistent with most existing C compilers. For this reason, the following definitions are
both correct, but the first one is obviously preferable.

const char *p = "xxx" ;

char *q = "zzz" ;

Remember that const objects must be initialized.

const int data1 ; // rejected

const int data2 = 2 ; // fine

const int *pdata1 ; // fine (pointed data is constant but pointer is not)

int * const pdata2 ; // rejected (pointer is constant)

Here are some frequent usages of const with formal parameters.

void f(const char *p)

{

++p ; // fine

++(*p) ; // rejected

}

void g(char * const p)

{

++p ; // rejected

++(*p) ; // fine

}

void h(const char * const p)

{

++p ; // rejected

++(*p) ; // rejected

}

26

11.3 Data structuration

11.3.1 Array

cpik currently supports arrays in any valid way.

11.3.2 Struct and Union

struct and union are supported since version 0.4, and this support is efficient. Unlike several other
well known compilers, cpik offers full support: structs can be passed to functions as parameters
and can be returned by functions.

structs are passed to function by value, as specified by the standard. Anonymous structs are
supported. structs are perfectly compatible with typedef. structs entities can be affected to
other entities of same type.

structs are guaranteed to be compact: as PIC-18 architecture does not impose any alignment
constraint, the size of a struct is the sum of the sizes of its members10.

structs cannot be larger than 128 bytes11, but I suppose it is not a terrible limitation for a 8 bit
microcontroller.

Members of structs can be signed or unsigned bit fields. As stated by the standard, a bit field
cannot cross an int boundary, so the size of a bit field can range from 1 to 8 bits. For example,
in the following code

struct XXX

{

unsigned a: 4 ,

b: 4 ;

} xxx ;

struct YYY

{

unsigned a: 5 ,

b: 4 ;

} yyy ;

the variable xxx is exactly 1 byte long, but the variable yyy is 2 bytes long because the second
field is one bit too long to be inserted in the first byte.

Bits are specified from low to high (so, in the above examples, a is the low nibble)

Please note that unsigned bit fields are more efficient than their signed counterpart because they
don’t need to be sign extended when they are converted to int.

11.4 Symbolic constants

Symbolic integer constants can be defined with the traditionnal enum declarator.

enum numbers { one=1, two, three } ;

or

typedef enum { peugeot=1, renault=2, citroen=4, other } cars ;

10However, this feature does no apply to structures composed of bit-fields, as explainded below.
11This feature is due to hardware limitation

27

In these examples, values of one, two, three are respectively 1,2 and 3, and values of peugeot,
renault, citroen and other are respectively 1, 2, 4, and 5.

Remember that constant defined with enum are ints, so the specified values must range from -128

to 255 (255 and -1 being in fact the same constant).

11.5 Storage classes

Variables can be either automatically or statically allocated.

Local variables and function parameters are truly auto entities: They are allocated on the data
stack (which is distinct from return stack). It means that (unlike several pic C compilers) cpik
can compile recursive algorithms12, and can be used to produce re-entrant code.

11.6 Static data initialization

All statically allocated13 variables/arrays/structures/unions can be statically initialized, as usual
in C. Partial initialization of arrays or structs/unions is supported, and constant expressions in
initializers are evaluated at compile time, whenever possible.

Initialization from a symbolic constant expression is supported (eg: expressions such a (t1-t2)+1,
where t1 and t2 are static arrays). In this case, symbolic expressions are generated and address
calculation is done at assembly time.

When initializing an union, the type of the initializer must match the type of the first member of
the union.

/* The following is supported */

int k = 4 ; /* simple initialization */

float speed = 31.4259e-1 ; /* simple initialization */

char str[] = "hi !" ; /* array size inferred from initializer */

int array[2][3] = {{1,2,3},{4,5,6}} ; /* initialization of array of arrays */

long z[10] = {0}; /* partial initalization, missing data replaced by 0s */

void f(float ff)

{

static char t=’Z’-26 ; /* compile-time constant folding */

static char msg1[] = "OK" ; /* 3 elements static array */

/* ... */

}

int *pk = &k +1; /* address calculation deferred to assembly stage */

void (*pf)(float) = f ; /* idem */

struct xxx a = { 1, 55 } ; /* structure initialization */

struct xxx b = { 5 } ; /* partial structure initialization */

11.7 Non static data initialization

Automatic scalar variables can be initialized. However automatic array/structure/union variables
cannot be initialized: this behavior corresponds to the old K&R standard, but is a restriction from
the ANSI standard.

void f()

{

float x = 3.14, x2 = 2 * x ; // OK

int t[] = { 1, 2, 3 } ; // NOT SUPPORTED

12However, remember that the hardware stack is limited to 31 levels.
13Local variable are not statically allocated, unless they are declared with static.

28

/* ... */

}

11.8 Scope control

The keyword static is implemented for data local to function, but not for data local to files. As
a consequence, a global variable cannot be hidden to other compilation units. In other words, all
global variables can be referenced via extern declarations.

static int x ; // not supported

void f()

{

static char c ; // supported

/* ... */

}

The keyword extern is implemented, so you can use extern to reference entities which are
defined within another compilation unit, or manually located entities (see next section).

11.9 Address allocation

The address of each global entity is determined during final assembly and depends on link process,
so you cannot make any assumption about regular variable/function locations.

However, each entity can be manually placed at any address, using the @address extension. For
example:

int x@0x12 ; // manually located definition

extern unsigned char STATUS@0xFD8 ; // manually located declaration

This feature is very handy to access Special Function Registers. cpik provides a set of header files
containing the declaration of each SFR register, for each processor. These headers are automatically
generated by a program that takes the informations from Microchip’s �.inc� files. For example,
here is the beginning of the p18f2525.h header file:

#ifndef DEVICE

#define DEVICE p18f2525

#define p18f2525

// ======================================

// PROCESSOR : p18f2525

// ======================================

// This file has been automatically generated from Microchip’s "p18f2525.inc" file.

// with the inc2h-v2 utility. Please do not edit by hand.

// Do not use with cpik versions prior V0.7, report problems to author.

// (C) Alain Gibaud 2012 (alain.gibaud@free.fr)

#pragma firstsfr 0xf80

// ------------------------------

// PORTA

// ------------------------------

unsigned int PORTA@0xf80 ;

29

union

{

struct

{

unsigned int

RA0 : 1 ,

RA1 : 1 ,

RA2 : 1 ,

RA3 : 1 ,

RA4 : 1 ,

RA5 : 1 ,

RA6 : 1 ,

RA7 : 1 ;

} ;

struct

{

unsigned int

: 4,

T0CKI : 1 ,

AN4 : 1 ;

} ;

struct

{

unsigned int

: 5,

SS : 1 ;

} ;

struct

{

unsigned int

: 5,

NOT_SS : 1 ;

} ;

struct

{

unsigned int

: 5,

LVDIN : 1 ;

} ;

struct

{

unsigned int

: 5,

HLVDIN : 1 ;

} ;

} PORTAbits@0xf80 ;

...

30

Please note that cpik does not perform any verification on the specified addresses. It is the
programmer’s responsibility to insure that the specified location really corresponds to usable
memory.

11.10 Instructions

All the instructions of the C language are implemented.

The support for the switch instruction has been developed by Josef Pavlik. This support is
especially effective and implements different strategies for code generation, depending on case
values.

This implementation only supports case-values that can be coded with 8 bits (eg: these values
must range from -128 to 255, and -1 and 255 are aliases). For this reason, long or long long

case selectors are truncated to int before executing the code selection. I have decided to keep
this feature because this is not a severe limitation, and it allows to guarantee both high speed and
compact code, so it perfectly respects the spirit of the switch statement.

11.11 Operators

All the operators of the C language are implemented.

11.12 Extensions

11.12.1 Binary constants

Binary integer constants can be specified, using the following syntax:

int i = 0b1010 ; // synonym for 0x0A or 10

11.12.2 Digit separator

Decimal, octal, hexadecimal or binary integer constants can be made more readable with the ’_’
character. This extension (inspired by ADA language) is useful for highlighting bit fields.

T2CON = 0b0_1110_0_11 ; // same as 0b01110011, but highlight bits fields

11.12.3 Assembler code

Assembler code can be included in C code using the __asm__ directive. The syntax of this
extension mimics gcc __asm__ extension.

void f()

{

__asm__("mylabel") ;

__asm__("\tmovlw 0\n"

"\tmovwf INDF0,0"

) ;

}

The __asm__ directive does not insert leading blank, so you can use it to insert labels. On the
other hand, a trailing newline is automatically appended to asm code.

Prior version 0.7.3, the inserted code had to leave the stack pointer (FSR0) unchanged. Violate
this rule made the compiler unable to access the local variables properly.

31

However, it is now possible to specify that the inserted code change the stack pointer, so the
compiler is not fooled anymore. The following code shows how to use __asm__() with an extra
parameter that gives the number of byte pushed on to the stack.

int g()

{

int a,b,c ;

// ...

__asm__("\tmovff PRODL,PREINC0", 1) ; // one byte pushed on to the stack

__asm__("\tmovff PRODH,PREINC0", 1) ; // one more byte pushed on to the stack

a = b+c ;

__asm__("\tmovff POSTDEC0,PRODH") ;

__asm__("\tmovff POSTDEC0,PRODL", -2)) ; // two bytes popped

return a ;

}

This feature allows the user to insert a more sophisticated assembler code in C code.

11.12.4 Interrupt service routines

The PIC18 devices use two kind of interrupts: low priority interrupts, and high priority interrupts.
The corresponding Interrupt Service Routines (ISR) respectively start at addresses 0x18 and 0x8.
cpik automatically put a branch instruction at these addresses, so the code of the ISRs can be
located anywhere in memory. Two empty interrupt service routines are provided by the run-time
library14.

• hi_pri_ISR for high priority interrupts,

• lo_pri_ISR for low priority interrupts.

A user who plan to use interrupts must provide a specific interrupt service routine that can be
written in C, using the (non-standard) __interrupt__ keyword as following:

__interrupt__ void hi_pri_ISR()

{

/* interrupt service code */

}

The used-defined routine will shadow the default one, because user libraries are scanned before
rtl.slb.

The role of the __interrupt__ keyword is to insure that

• W, BSR, FSR1, FSR2, STATUS, registers are properly saved and restored on the data stack15.

• retfie 0 is used as return instruction instead of return 0 16 .

The body of an ISR routine can be written in pure assembly language, using the asm directive.
In this case, all previously mentioned registers can be freely altered, as long as FSR0 (the software
stack pointer) is not altered when the ISR exits.

When the interrupt code is written in C (or mix of C and asm code), registers used by the run-time
library and user code will be saved if a proper pragma saved regs has be seen by the compiler
before the source code of the ISR.

14The run time library is the file /usr/share/cpik/<version>/lib/rtl.slb
15FSR0 is not saved because it is the stack pointer itself.
16The reftie 1 instruction is not used because it is explicitly mentioned as bogus by errata documents from

Microchip.

32

A standard saved regs pragma is provided in the <interrupt.h> header, so, generally, nothing
special must be done if interrupt.h is included. However, I recommend to verify that the registers
specified by the saved regs pragma match the registers that are actually used in the ISR.

See section 9.4.5 about the saved regs pragma for details.

Note: the SAVE REGS and RESTORE REGS macro that were defined in the <interrupt.h> header
prior version 0.7.3 are now suppressed and cannot be used anymore. Any call of these macros
should be removed from your source code and the equivalent saved regs pragma should be
inserted before the concerned ISR.

11.12.5 Why and how to write interruptible code

The code generated by cpik is intrinsically interruptible. The run-time library, which is written
in assembly code is also interruptible.

In order to implement a multi-priority interrupt system, low priority interrupt code must also be
interruptible.

If you plan to use asm code and interruptions together, you must enforce a simple rule : the
software stack pointer (FSR0) must always point to top of stack (ie: to the last byte pushed onto the
stack). Violating this rule will lead to stack corruption and data loss when an interruption occurs.
Please read the following section, which is related to this point.

11.12.6 Disabling and enabling interrupts

In some very rare situations one can have to violate the interruptibility rule. In this case, in-
terruptions must be masked. In order to keep the code consistent with interruptions usage you
must use the following macro to manage interrupts (ie: never change the INTCON enabling bits
(GIE/GIEH/GIEL) directly).

1. MASK_HI_PRI_IT : disable high priority interrupts.

2. MASK_LO_PRI_IT : disable low priority interrupts.

3. UNMASK_HI_PRI_IT : enable high priority interrupts.

4. UNMASK_LO_PRI_IT : enable low priority interrupts.

Before entering a critical (ie: non-interruptible) section, just use the DISABLE_IT macro : it will
atomically disable all interrupts. When you leave the critical section, use the ENABLE_IT macro :
interrupts will be restored to the previous state, no matter they was enabled or not. Of course,
never change the interrupt status in a critical section, and never enter a critical section inside a
critical section.

Caution: never use one of these macros in an Interrupt Service Routine because it is likely to
cause an infinite recursive call of the ISR. This limitation is caused by a flaw in the design of the
PIC18 architecture. All these macros are defined in <interrupt.h> header.

11.12.7 Explicit bit fields

This very handy feature allows to use any bit slice of a 8 bit variable in an expression. For this
purpose, cpik provides the non-standard syntax

var.OFFSET:SIZE

which corresponds to a slice of SIZE bits starting at bit number OFFSET of var.

Notice that :

33

1. The above syntax is not the invocation of an operator, it just a way to define a temporary
sub-variable corresponding to a bit slice. As a consequence, var must be an existing variable
identifier and cannot be an expression.

2. OFFSET and SIZE must be integer constants, or integer constant expressions. (OFFSET can
range from 0 to 7 and SIZE can range from 1 to 8).

3. Obviously, OFFSET+SIZE cannot be higher than 8 because a bit field cannot cross a byte
boundary.

4. A bit field that is 8 bit wide is not rejected, but is viewed as a plain byte by the compiler.

As an example, suppose we need to copy PORTB<0-3> (configured as input) to PORTB<7-4> (con-
figured as output).

• Without using bit fields (cpik < V 0.7) , you will probably have to write something like:

uint8_t x ;

x = PORTB << 4 ;

PORTB &= 0x0F ; // clear dest bits

PORTB |= x ;

• Another alternative is to define a structure, and to map it to PORTB’s address :

struct

{

unsigned low:4,

hi:4 ;

}

my_portb@0xF81 ;

my_portb.hi = my_portb.low ;

Of course, this code supposes that PORTB is at address 0xF81, and will fail if it is not the
case anymore.

• The third solution is to use explicit bit fields: the corresponding code is really straightforward:

PORTB.4:4 = PORTB.0:4 ;

Of course, if you need your code to be easily reconfigurable, a couple of macro will do the
job:

#define LNIBBLE 0:4

#define HNIBBLE 4:4

PORTB.HNIBBLE = PORTB.LNIBBLE ;

Note that explicit bit fields are always unsigned.

cpik is now released with header files which allow to handle device registers as structures or explicit
bit fields. Please see section 13.1 for details.

34

12 Hints and tips

Using cpik is not tricky, due to a simple and orthogonal design. However, some points may cause
problems, due to special features of PIC 18 processors or peripherals.

12.1 Access to 16 bit SFR

16 bit SFRs (Special Function Register) are made of two 8 bit registers. You can access them as
single 16 bit variables located at same address than the low part of the data. For example, AD
converter specific registers are defined as

unsigned int ADRESL@0xfc3 ;

unsigned int ADRESH@0xfc4 ;

In order to access the result of an AD conversion as single 16 bit value, just declare the following:

unsigned long ADresult@0xfc3 ;

12.2 Access to 16 bit SFR - second part of the story

Viewing two contiguous 8 bits SFRs as a single 16 bit register in correct for almost all situations.
However, it fails when accessing the TIMER0 registers, because TMR0L and TMR0H SFR are continu-
ously modified by the hardware clock and need to be managed in a very special way (this is also
true for TMR1H/L, TMR2H/L, etc.).

A write in TMR0H only stores data in a temporary register. During write to TMR0L, this temporary
register is transferred to real TMR0H, so TMR0L and TMR0H are simultaneously updated. This feature
is a trick imagined by Microchip’s designers to allow atomic writes to 16 bit data on a 8 bit
processor, but forces to write hi byte first, then low byte. Please see Microchip documentation for
details.

Unfortunately, the code generated by cpik may write low byte first, so TMR0H is loaded with
spurious data, and dataH is lost. The solution is simple, but need to split access in two parts:

TMR0H = value_to_load >> 8 ; // hi byte first

TMR0L = value_to_load & 0xFF ;

The same feature exists for reads, but doesn’t cause problem because reads are performed in
the correct order. However, this point might be changed if code generator or run-time library is
changed, so I recommend to perform reads with same care.

12.3 How to initialize EEPROM data

There is currently no specific #pragma to force EEPROM data value during chip programming. If
you plan to initialize the EEPROM, the following will do the job: use the __asm__() instruction
to insert one (or more) �DE� directive in the emitted code. See the gpasm documentation for
details about this directive.

Another option is to explicitly put the data at the correct address, as showed by this example.

void your_function()

{

/* Do the job this function is written for */

return ;

/*

35

the following sequence is just a hack to insert

data at eeprom addr in hex file

It does not correspond to executable code

(and cannot be reached by execution flow)

*/

__asm__("ee___sav equ $") ;

__asm__("\torg 0xF00000") ;

__asm__("\tfill 0,1024") ; // 1K byte eeprom memory for 18F2525

__asm__("\torg ee___sav") ;

}

Here, I initialize all EEPROM space of a 18F2525 device with 0x00 (the default value for an
�erased� chip is all 0xFF). Remember that the function must be used to be included in the final
executable file.

12.4 Use struct to increase modularity

struct usage is a good way to avoid global namespace pollution and to decrease the probability
of global names clashes.

For example, one can group related data into a global struct, so only one name is visible at
global level. For example:

/* global data */

int a,b ;

long c ;

char t[10] ;

could be replaced by an (anomymous or not) struct

struct

{

int a,b ;

long c ;

char t[10] ;

} mycontext ;

Data should be addressed by expressions such as mycontext.c = 23 ; wich is verbose but has
exactly the same cost as c = 23 ;

12.5 Do not use uppercase only symbols

Device-specific headers (ie: p18fxxx.h files) contain variable declarations and constant definitions.
This may lead to clashes with your own declarations. For example

struct Z { int a,b ; } ;

will lead to unexpected and hard to understand error message. The reason is simple: Z is
defined by a macro as a numeric constant so your code will be expanded by the preprocessor to
something like:

struct 2 { int a,b ; } ;

which is hard to understand for the compiler. Hopefully, this situation is simple to avoid because
the headers define uppercase only symbols. Do not use this kind of symbols yourself.

36

12.6 How to write efficent code

The following simple rules helps the compiler to produce more efficient code.

1. Use unsigned variant of integers, whenever possible

2. Use int (or char) instead of long, whenever possible

3. Prefer ++ to += and += to +

4. Avoid to compute twice the same sub-expression (using operators such as += is a good way
to enforce this rule)

5. Array access are not very efficient, so prefer to access arrays’ content thru pointers.

6. Do not hesitate to use structs, they are generally very efficient.

7. Do not hesitate to use constant array indexes, they are generally very efficient.

8. Using global variables leads to smaller and faster code. Be careful, it also leads to lack of
modularity and memory wasting. See previous section for modularity issue.

9. Implement 8 bit left shifts with ×2 products: due to availability of hardware multiplication
the code will be fast. This rule does not apply to right shifts.

10. Use switch instead of cascaded if whenever possible. The code will be faster and smaller.

11. Prefer unsigned bit fields to signed ones. Signed bit fields need frequent sign extensions
which are resource consuming.

12. Avoid accessing bit fields from pointers (ie: s->member). This operation involves an indirec-
tion which is also resource consuming.

37

13 Headers

This section covers several headers that are part of the standard or that are provided as helpers
to write more portable or cleaner code. These headers are not related to a specific library.

13.1 device/p18xxxxx.h

The device directory contains an header file for each flavor of PIC18 device. #include one of these
files when you need to access a register of the the target device (eg: #include <device/p18f2525.h>).
Since version V0.7.0, the device headers contain various definitions that allow to access each bit of
registers using a symbolic identifier. These identifiers can be found in Microchip’s datasheets.

Each bit (or bit field) can be accessed using the standard syntax (based on structures) or using
the explicit bit field syntax (that is specific to cpik). The following example illustrates how the
devices’ registers are declared.

// ======================================

// PROCESSOR : p18f2525

// ======================================

// This file has been automatically generated from Microchip’s "p18f2525.inc" file.

// with the inc2h-v3 utility. Please do not edit.

// Do not use with cpik versions < V0.7. Please report problems to the author.

// (C) Alain Gibaud 2012-2013 (alain.gibaud@free.fr)

// Note; All SFRs are reachable via access bank

#pragma firstsfr 0xf80

// ...

// ...

// ------------------------------

// T3CON

// ------------------------------

unsigned int T3CON@0xfb1 ;

union

{

struct

{

unsigned int

TMR3ON : 1 ,

TMR3CS : 1 ,

NOT_T3SYNC : 1 ,

T3CCP1 : 1 ,

T3CKPS0 : 1 ,

T3CKPS1 : 1 ,

T3CCP2 : 1 ,

RD16 : 1 ;

} ;

struct

{

unsigned int

: 2,

T3SYNC : 1 ;

} ;

38

// The following are aliases ..

struct

{

unsigned int

: 4,

_T3CKPS : 2 ;

} ;

} T3CONbits@0xfb1 ;

#define _TMR3ON 0

#define _TMR3CS 1

#define _NOT_T3SYNC 2

#define _T3CCP1 3

#define _T3CKPS0 4

#define _T3CKPS1 5

#define _T3CCP2 6

#define _RD16 7

#define _T3SYNC 2

// The following are aliases ..

#define __T3CKPS 4:2

In this example, the T3CON register contains both individual bits, and a group of 2 bits
(T3CKPS0 and T3CKPS1), which can be manipulated as a bit field. Thus, the following codes
are equivalent because the _T3CKPS member name is an alias for the T3CKPS0/T3CKPS1 group of
bits.

T3CONbits.T3CKPS0 = 0 ; T3CONbits.T3CKPS1 = 1 ; // method 1 : individual bits

T3CONbits._T3CKPS = 0b10 ; // method 2 : bit field

Moreover, macros are also provided to use the explicit bit field syntax (see section 11.12.7).
These macros have the same name that the classic member names, with a �_� prefix:

T3CON._T3CKPS0 = 0 ; T3CON._T3CKPS1 = 1 ; // method 1 : individual bits

T3CON.__T3CKPS = 0b10 ; // method 2 : bit field

Notice that the names T3CKPS0, T3CKPS1, etc have been chosen to be compatible with the
member names used by Microchip, but obviously, they sound like macro names, despite the fact
they are not. On the other hand, the identifiers such as T3CKPS0, etc. correspond to genuine
macros.

13.2 sys/types.h

This header helps you to improve the portability of your code. It defines a set of ANSI-compatible
integeral types as described in section 11.2.2, but is not part of the ANSI standard.

13.3 macro.h

This header provides a set of general purpose handy macro. In the following, reg denotes a 8 bit
signed or unsigned integer, and bit a bit number (0 ≤ bit ≤ 7). macro.h is not part of the ANSI
standard.

39

Macro Role

BIT_1(reg, bit) Set bit bit of reg variable
BIT_0(reg, bit) Reset bit bit of reg variable
BIT_TST(reg,bit) Return true if bit bit of reg is set.
BIT_TOGGLE(reg, bit) Toggle bit bit of reg
BIT_COPY(treg, tbit, sreg, sbit) Copy bit sbit of sreg to bit tbit of treg
BIT_NCOPY(treg, tbit, sreg, sbit) Copy inverse of bit sbit of sreg to bit tbit of treg
BIT_WRITE(treg, tbit, flag) Copy the boolean value flag to bit tbit of treg
NOP Generate a nop asm instruction
CLEAR_WATCHDOG Generate a clrwdt asm instruction

Notice that the bit-oriented macros are made obsolete since V0.7.0 due to the availability of bit
fields.

13.4 pin.h

pin.h provides a set of very handy macros that allow to use the bit of each port thru symbolic
names. This header has been written by Josef Pavlik.

The first step to use them is to specify the logical name of each bit to be used. The general form
of this specification is:

#define <logical name> <port name><bit number>

for example, the following declare LED to be the logical name corresponding to the bit 3 of port C.

#define LED PORTC3

Such a logical name can be defined for ports A,B,C,D or E and must be used with the following
macros:

Macro Role

PIN_SET_INPUT(name) declare name as input bit
PIN_SET_OUTPUT(name) declare name as output bit
PIN_SET_OUTPUT0(name) declare name as output bit, and force it to 0
PIN_SET_OUTPUT1(name) declare name as output bit, and force it to 1
PIN_SET(name) force name to 1
PIN_1(name) synonym for PIN SET

PIN_CLR(name) force name to 0
PIN_0(name) synonym for PIN CLR

PIN_TOGGLE(name) toggle name

PIN_READ(name) return 0 when name is clear, else return a non-nul value
PIN_TST(name) synonym for PIN READ

PIN_WRITE(name,value) clear name when value is 0, else set it

13.5 stdarg.h

stdarg.h is the standard header that defines the macros va_start, va_end and va_arg. You must
include this header when you plan to define a function accepting a variable argument list.

13.6 float.h

float.h is the standard header that defines various constants relative to the floating point support.

40

For example, FLT_MAX (the greatest representable floating point number) is defined in this file,
together with many other constants.

13.7 assert.h

assert.h is the standard header that defines the assert() macro. assert() is generally used
during tests to check that a given condition is always verified. The run-time support for this
functionality is implemented in stdlib.c.

41

14 Libraries

Until now, a small number of libraries are available, and they have been developed for my own
needs, and/or compiler testing, so they are not always versatile.

Excepted for rtl.slb, float.slb and lcd.slb (which are directly written in assembly lan-
guage) each library x is written in C, and related to 3 files:

• x.c : the source code (when written in C),

• x.h : the header file,

• x.slb : the source library file (compiled version of x.c

Obviously, sources files are not needed to use libraries, but can be useful because the cpik project
is under development, so libraries are far from being stabilized.

Sources libraries are installed in /usr/share/cpik/<version>/lib and headers
in /usr/share/cpik/<version>/include.

However, source libraries generated from C files are not distributed because they depends on
compiler and run time code version. You need to recompile the source code yourself.

As the compilation is really very fast, I generally include the source code of the libraries I use
in my pikdev projects, so they are compiled with the rest of the application.

14.1 standard IO library

Basic support for standard-like IOs. This library can be used to perform IO on character oriented
devices. Attachment to one device is based on redirection of an input and output function (see
below).

Redirections can be changed at any time to use several devices simultaneously. However,
remember that the input buffer is unique and should be flushed when the input device is changed.

14.1.1 IO redirection

1. output_hook set_putchar_vector(output_hook)

Sets indirection vector for character output. This function gets and returns a pointer to
a function receiving char and returning void. This feature allows redirection of outputs
to virtually any device, and to save the previous output vector. The output vector is not
initialized, so this function must be used prior any output.
output_hook is defined by typedef void (*output_hook)(char) ;

2. input_hook set_getchar_vector(input_hook)

Sets indirection vector for character intput. This function gets and returns a pointer to
a function returning char and receiving void. This feature allows redirection of inputs
from virtually any device, and to save the previous intput vector. The input vector is not
initialized, so this function must be used prior any input.
input_hook is defined by typedef char (*input_hook)() ;

14.1.2 output functions

1. void putchar(char c)

Writes character c.

2. int puts(char *s)

Writes string s. Always returns 0.

42

3. int RFputs(ROMF_i8_t p)

Writes the string corresponding to the rom accessor p. Please see section 10.8 for details
about data located in ROM. Always returns 0.

4. void outhex(unsigned long n, char up)

Writes the unsigned long n in hexadecimal. If up is ’A’ uppercase letters are used for
A B C D E F digits, else up must be equals to ’a’, and lowercases are used. Any other value
leads to unpredictable result.

Due to automatic type conversion and leading zeros suppression, this function can be also
used for 8 bit numbers

5. void outhex32(unsigned long long n, char up)

Writes the unsigned long long n in hexadecimal. If up is ’A’ uppercase letters are used for
A B C D E F digits, else up must be equals to ’a’, and lowercases are used.

Due to automatic type conversion and leading zeros suppression, this function can be also
used for 8 bit or 16 bit numbers. However I do not recommend this option if resource are
limited because it leads to import unnecessary 32 bit code in your application.

6. void outdecu(unsigned long n)

Writes unsigned long n in decimal. Leading 0 are suppressed, so this function can be also
used for 8 bit numbers, which are promoted to unsigned long before call.

7. void outdecu32(unsigned long long n)

Writes unsigned long long n in decimal. Leading 0 are suppressed, so this function can be
also used for 8 bit or 16 bit numbers, which are promoted to unsigned long long before
call. However I do not recommend this option if ressources are limited because it leads to
import unnecessary 32 bit code in your application.

8. void outdec(long n)

Writes long n in decimal. Leading 0 are suppressed, so this function can be also used for 8
bit numbers.

9. void outdec32(long long n)

Writes long long n in decimal. Leading 0 are suppressed, so this function can be also used
for 8 bit or 16 bit numbers. However I do not recommend this option if resources are limited
because it leads to import unnecessary 32 bit code in your application.

10. int putfloat (float x, int prec, int format)

Writes the float number x on the standard output. The prec parameter specify the number
of digit that must be printed after the decimal point. prec can range from 0 to 7. A
negative value ask the function to print with the maximum precision. The format parameter
can be either ’f’ (classic format like in �1.0022�), ’e’ or ’E’ (scientific format like in
�31.4158e-1� or �-1.0E4�).

11. int printf(const char *fmt, ...)

Mini implementation of the standard printf() function. Recognized conversion specifica-
tions are :
%c %s %d %u %x %ld %lu %lx %lld %llu %llx %f %e %E

See more information about conversion specifiers in section 14.1.3

This function return the number of characters printed.

12. int RFprintf(ROMF_i8_t fmt)

Version of printf() receiving its format string through a rom accessor. Please see section
10.8 for details about what is a rom accessor.
See more information about conversion specifiers in section 14.1.3

This function return the number of characters printed.

43

14.1.3 Conversion specifiers supported by the printf() family

The printf function is very handy, but very memory consuming when all the data types are
simultaneously supported. For this reason, the support for 32 bit integers and floating point
numbers must be explicitely enabled to become active. If you need this support, just #define the
macros INT32_IO and/or FLOAT_IO when stdio.c is compiled17.

Specifier Data types of parameter Support

%c int, char always
%s char *, int *, etc. always
%d int, char always
%u unsigned int, unsigned char always
%x int, char, unsigned int, unsigned char always
%ld long always
%lu unsigned long always
%lx long, unsigned long always
%lld long long INT32_IO defined
%llu unsigned long long INT32_IO defined
%llx long long, unsigned long long INT32_IO defined
%f float (standard notation) FLOAT_IO defined
%e float (scientific e notation) FLOAT_IO defined
%E float (scientific E notation) FLOAT_IO defined

In order to save memory, printf() do not support minimal width specifiers, such as %3ld.

However, a precision specifier is supported for %f %e and %E. For example, %3e ask printf() to
print 3 decimal digits after the decimal point. The specified precision can range from 0 to 7 (that
is the default value).

Remember that the number of significant digits is 6 or 7 for the IEEE-754 floating point numbers.
For example, printing 1.0E4

3 with more than 3 digits after the decimal point doesn’t make sense
because the least significant written digits do not represent anything in the result.

14.1.4 input

1. long getch()

Returns the next available character, or EOF if no character is available. This character is
not echoed thru the output vector. This input is not buffered.

2. long getche()

Returns the next available character, or EOF if no character is available. This character is
echoed thru output vector. For this reason, set putchar vector() must be used prior any
use of getche(). This input is not buffered.

3. long getchar()

Returns the next available character, or EOF if no character is available. This character is
echoed thru output vector. This input is buffered. (See ungetchar()). The input buffer is
80 bytes long, but this can be easily changed at source code level.

All �high level� functions such as scanf() or gets() use getchar() as low level input
function.

Notice that (like getch() or getche()) this function returns a long, so all values ranging
from 0 to 255 can be returned.

17You can either edit the source code, or just use -DINT32 IO -DFLOAT IO at cpik invocation.

44

4. unsigned int fillbuf(char p[],unsigned int nmax, int *eof_flag)

This function is used to fill the input buffer when it is empty. p points to this buffer, which
can contains up to nmax characters. This function stops reading when the buffer is full (nmax
characters) or when the ’\n’ character is encountered.

fillbuf returns the number of character stored in the input buffer, including the ’\n’

terminator, but excluding the ’\0’ trailer.

As a side effect, eof_flag is set to 1 when end-of-file condition is reached, and 0 if not.

fillbuf interprets the Backspace character, so it provides a primitive but useful line editing
capability.

5. char *gets(char *t)

Read input characters until ’\n’ is encountered, and store them into buffer pointed to by p.
Terminating ’\n’ is not stored into buffer. Always return t.

6. int getlong(long *pn,int base);

Reads a signed long integer in base base, and store it at location pointed to by pn. Returns
1 if successful, else 0.

7. int getlong32(long long *pn,int base);

Reads a signed long long integer in base base, and store it at location pointed to by pn.
Returns 1 if successful, else 0.

8. int getfloat(float *pf);

Reads a float number, and store it in the variable pointed to by pf.

This function returns the number of digits of the number (ie: returning 0 means that the
input has failed).

9. int scanf(const char *fmt, ...) ;

Mini implementation of scanf() function. Recognized format specifications are :
%c %s %d %u %x %ld %lu %lx %lld %llu %llx %f

This function returns the number of conversion specifiers successfully processed.

10. int RFscanf(ROMF_i8_t fmt, ...) ;

Version of scanf() receiving its format string thru a rom accessor. Please see section 10.8
for details about data located in ROM.

This function returns the number of conversion specifiers successfully processed.

14.1.5 Conversion specifiers supported by the scanf() family

Like printf(), scanf() doesn’t support all the conversion specifiers by default. If you
need this support, just #define the macros INT32_IO and/or FLOAT_IO when stdio.c is
compiled18.

18You can either edit the source code, or just use -DINT32 IO -DFLOAT IO at cpik invocation.

45

Specifier Data types of parameter Support

%c pointer to int, char always
%s pointer to char, int, etc. always
%d pointer to int, char always
%u pointer to unsigned int, unsigned char always
%x pointer to int, char, unsigned int, unsigned char always
%ld pointer to long always
%lu pointer to unsigned long always
%lx pointer to long, unsigned long always
%lld pointer to long long INT32_IO defined
%llu pointer to unsigned long long INT32_IO defined
%llx pointer to long long, unsigned long long INT32_IO defined
%f pointer to float (standard or scientific notation) FLOAT_IO defined

14.2 Standard math library

Since V0.6.0, cpik comes with a near complete standard math library. Here is a list of the well
known math functions that are supported. These functions are prototyped in math.h, that also
#defines numerous standard macros such as PI, TWO PI, HALF PI, QUART PI, etc.

14.2.1 Trigonometric functions

1. float sinf(float x) ;

2. float cosf(float x) ;

3. float tanf(float x) ;

4. float cotf(float x) ;

5. float asinf(float x) ;

6. float acosf(float x) ;

7. float atanf(float x) ;

8. float atan2f(float x, float y);

14.2.2 Hyperbolic functions

1. float sinhf(float x) ;

2. float coshf(float x) ;

3. float tanhf(float x) ;

14.2.3 Exponential, logarithmic and power functions

1. float expf(float x);

2. float logf(float x) ;

3. float log10f(float x) ;

4. float powf(float x, float y);

5. float sqrtf(float a) ;

46

14.2.4 Nearest integer, absolute value, and remainder functions

1. float fabsf(float x) ;

2. float frexpf(float x, int *pw2);

3. float ldexpf(float x, int pw2);

4. float ceilf(float x) ;

5. float floorf(float x) ;

6. float modff(float x, float * y);

14.3 Standard stdlib library

This library is not complete yet. It contains the following standard functions :

14.3.1 System

1. int _assert(long line,char *s) ; // support for the assert() macro

2. void exit(int i) ;

14.3.2 Character processing

1. int isspace(char c);

2. int isdigit(char c);

14.3.3 Conversions to/from strings

1. char *ftoa (float x, char * str, int prec, int format);

2. float strtof(const char *str, char **endptr);

3. float atof(const char *str) ;

4. int atoi(const char *str) ;

5. long atol(const char *str) ;

6. long long atoll(const char *str) ;

14.4 rs232

Minimum support for pic rs232 interface.

1. void rs232_init()

Configures rs232 interface in polling mode. Provides 9600 bauds communications at 16Mhz.
Source code must be modified for other speeds

2. void rs232_putchar(char c)

Sends character c to rs232 interface when this one becomes available.

3. char rs232_getchar()

Waits for a character, and returns it when available. Can indefinitly block.

47

14.5 LCD

Support for classic HD-44780 based LCD display, in 4 bit unidirectional mode. This kind of
interface needs 6 lines (data4/data5/data6/data7 , RS and E). Since version 0.5.3 the LCD
library is configurable to allow any connection to the target device. It provides for this purpose
the following macros:

• CONFIGURE_LCD_RS(PORTx , pin) ;

• CONFIGURE_LCD_E(PORTx , pin) ;

• CONFIGURE_LCD_DATA4(PORTx , pin) ;

• CONFIGURE_LCD_DATA5(PORTx , pin) ;

• CONFIGURE_LCD_DATA6(PORTx , pin) ;

• CONFIGURE_LCD_DATA7(PORTx , pin) ;

Despite the fact this library is written in assembly language, the configuration can be done
from the C code: just put the macro invocations somewhere in the main() function. For example:

// command/data selection pin

CONFIGURE_LCD_RS(PORTB, 5) ;

// enable pin

CONFIGURE_LCD_E(PORTB, 4) ;

// data pins used in 4 bit mode

CONFIGURE_LCD_DATA4(PORTA, 0) ;

CONFIGURE_LCD_DATA5(PORTA, 1) ;

CONFIGURE_LCD_DATA6(PORTA, 2) ;

CONFIGURE_LCD_DATA7(PORTA, 3) ;

The following are low level functions, but LCD display can also be used from hi-level functions
(such as outdec() or printf()), if the proper output redirection is programmed.

1. void lcd init(int delay) ;

Initialize the LCD display. The delay parameter is used by internal temporisation loops.
Delay depends on LCD display capabilities and device clock. The following values work for
me.

CPU frequency delay

4Mhz 8
8Mhz 15
16Mhz 30
32Mhz 60
40Mhz 75

2. void lcd init Mhz(int Mhz) ;

This is a macro, provided for convenience as an alternative to void lcd init(int delay).
The Mhz parameter is simply the clock frequency (in Mhz) of the target processor.

3. void lcd putchar(char c);

Displays character c at current cursor position. This function can be used as the parameter
of set output() to redirect outputs to the LCD display.

48

4. void lcd_move(int pos) ;

Moves cursor to pos position. Coordinate system depends on LCD type. The following
function allows to compute the cursor position for most classic flavors of LCD displays. Note
that this function is not part of the library.

// number of columns (16, 20 or 24)

#define LCD_COLS 20

uint8_t lcd_cursor_addr(uint8_t line, uint8_t col)

{

#if LCD_COLS == 16

static uint8_t laddrtab[4] = { 0x0, 0x40 , 0x10, 0x50 } ;

#elif LCD_COLS == 20

static uint8_t laddrtab[4] = { 0x0, 0x40 , 0x14, 0x54 } ;

#elif LCD_COLS == 24

static uint8_t laddrtab[4] = { 0x0, 0x20 , 0x40, 0x60 } ;

#else

#error "LCD_COLS should be either 16 20 or 24"

#endif

return laddrtab[line]+ col ;

}

5. void lcd_clear() ;

Erases display.

6. void lcd_hex4(unsigned int c) ;

Displays low nibble of c, as an hexadecimal digit.

7. void lcd_define_char(char c,char bitmap[8]) ;

Defines a new character with code c.

Definable character codes range from 0 to 7, and the character matrix is 5x8 pixels large.
bitmap array is an image of the character, each array’s element corresponding to one line of
the matrix.

8. void lcd_hex8(unsigned int c) ;

Displays c as two hex digits.

9. void lcd_hex16(unsigned long n) ;

Displays n as four hex digits.

10. void lcd_puts(char *s) ;

Displays a nul-terminated character string.

11. void lcd_Rputs(ROMptr s) ;

Displays a nul-terminated character string pointed to by rom pointer p. Please see section
10.8 for details about data in ROM.

12. void lcd_RIputs(ROM literal) ;

Displays a nul-terminated character string defined by an immediate rom literal. Please see
section 10.8 for details about data in ROM.

13. void lcd_putcmd(char cmd) ;

Enters command mode, then send command cmd to LCD display. This function can be used
to access more advanced functionnalities of the LCD display.

49

14.6 AD conversion

This library is really minimal : I wrote it for my own needs, so the source code must be edited to
be adapted to yours.

1. void AD_init()

Initialize AD conversion system for 16MHz processor. AN0,AN1,AN2 and AN4 are used as
analog inputs. AN3 is used as voltage reference input.

2. unsigned long AD_get(unsigned int ch)

Starts AD acquisition and conversion on channel ch. Channel number can be 0 (AN0), 1

(AN1), 2 (AN2) or 3 (AN4).

14.7 EEPROM read/write

This library allows to perform EEPROM read/write in polling mode. It also contains code to
statically initialize EEPROM data (see section hints and tips for details). Please comment out or
modify this code (see ee_init() routine to fit to your own needs).

1. void ee_init()

Initializes EEPROM subsystem in polling mode.This routine also contains code to statically
initialize EEPROM data (see section hints and tips for details). This code may have to be
edited to fit your needs.

2. unsigned int ee_read8(unsigned long addr)

Returns the 8 bit data located at address addr.

3. unsigned long ee_read16(unsigned long addr)

Returns the 16 bit data located at address addr.

4. void ee_write(unsigned long addr, unsigned int value)

Writes 8 bit value at address addr.

5. void ee_write16(unsigned long addr, unsigned long value)

Writes 16 bit value at address addr.

6. unsigned int ee_inc8(unsigned long addr)

Increments 8 bit value located at address addr. Return the incremented value.

7. void ee_inc16(unsigned long addr)

Increment 16 bit value located at address addr.

8. void ee_refresh()

Performs EEPROM refresh as recommended by Microchip data sheet, for very long time data
retaining. This routine is not really tested, but I used it, and data have not been destroyed.

14.8 Timer 0

Basic implementation of a slow real-time clock, with 1s and 1
10s ticks. This module can provide up

to 8 independent 1s 16 bit clocks. It also provides one 32 bit 1s clock. Moreover, a flag is toggled
each 1

10s, and provides a faster clock.

1. void timer0_init()

This function initialize timer0 sub-system (mainly prescaler register). It calls reload_timer0(),
then starts timer0 activity.

50

2. void reload_timer0()

Reloads timer0 for 1
10s delay.

3. void timer0_ISR()

Interrupt Service Routine for timer0 interrupts. You must install an interrupt handler which
calls this ISR. The following code will do the job.

__interrupt__ void hi_pri_ISR()

{

if (INTCON & (1 << TMR0IF)) // does interrupt come from timer0 ?

{

timer0_ISR() ; // yes, call interrupt handling code

}

}

4. void start_clock(unsigned clocknum)

Sets clock count of clock number clocknum to 0, then start it.

5. void stop_clock(unsigned int clocknum)

Stops clock clocknum. Stopped clocks can be restarted.

6. void restart_clock(unsigned int clocknum)

Restarts a stopped clock.

7. unsigned long get_clock(unsigned int clocknum)

Gets number of seconds elapsed since clock clocknum has been started or restarted.

8. unsigned long get_clockm(unsigned int clocknum)

Gets number of minutes elapsed since clock clocknum has been started or restarted.

9. void clear_clock(unsigned int clocknum)

Explicitely sets clock clocknum to zero.

10. unsigned long *get_globalclock()

Returns addr of first element of an array of two unsigned long containing global clock. First
element of this array contains low part of global clock. Global clock is statically initialized
and started when timer0_init() is called. There is no way to stop it.

11. insigned int timer0_flags()

Returns current state of clocks flags. One bit of the value returned by this function is toggled
each second. Another bit is toggled each 1/10 second.

The T0_1S_FLAG and T0_0_1S_FLAG constants must be used to get the flag you need.

Here is an example of code executing a task each second.

unsigned int old_flag = timer0_flags() & T0_1S_FLAG, new_flag ;

for(new_flag = old_flag ; ;)

{

if((new_flag = timer0_flags() & T0_1S_FLAG) != old_flag)

{

old_flag = new_flag ;

// do something each second

}

}

51

15 Source library structure

A source library is an assembly language source file, with special comments interpreted by cpik
linker. Each special comment begins with ";<", located at first column, and ends with ">". Any
information inserted after the final ">" are really comments and will be ignored by the linker.

Source libraries are structured in modules, each module can contains either data or code.

Here is the list of recognized special comments:

1. Begin of module definition : the specified module follows the comment.

;<+module_name>

The module name can be optionally followed by the specification of a program section, with
the following syntax:

;<+module_name|section_type>

The cpik linker supports 4 types of program sections :

(a) CDATA

This segment is dedicated to const data. Such data will be located at begin of ROM
and will not copied to RAM

(b) IDATA

This segment is dedicated to initialized data. The module must contain the �;<=� tag
(see below) with exact number of bytes to be used for initialization

(c) UDATA

This segment is dedicated to uninitialized data and is filled with nul bytes during boot.

(d) CODE

This segment contains all other kind of modules (code, symbols, etc.)

A module with no section specification will be included in the CODE program section.

2. End of module definition

;<->

3. Module reference : the specified module is needed by the current module.

;<?module_name>

4. Static initializer : the specified data must be used by the linker to initialize the current
module (this module corresponds to an array or structure). A module can contain several
static initializers.

;<= byte1 byte2 ... >

Example:

int table[3] = { 1, 2 } ;

unsigned char x2(unsigned char c)

{

return c * 2 ;

}

52

will generate:

;<+C18_table|IDATA>

CBLOCK

C18_table:3

ENDC

;<= 1 2 0 >

;<->

;<+C18_x2> unsigned char x2(unsigned char c@0)

C18_x2

; return c * 2 ;

movff INDF0,PREINC0

movlw 2

ICALL mul8u

movff POSTDEC0,R0

; }

L18_main_x2_0

return 0

;<?mul8u>

;<->

53

16 Needed software

The GNU cpp preprocessor must be installed in your system. As cpp is de facto installed with all
Linux distributions, this is not a strong requirement.

17 Contributors

• Alain Gibaud

Original author of the compiler and run-time library.

• Josef Pavlik

– Bug fixes in library and code of compiler,

– pin.h header,

– Implementation of enum declarator and switch instruction,

– Optimization of the run-time support for shifts,

– Dead-code elimination in the case of tests or loops with a constant condition,

– Optimization of the static data initialization,

– Optimization of tests in some special situations,

– Post-compilation branch optimizer that eliminates far jumps whenever possible.

Thank you Josef!

18 Credits

Most of the code of the cpik project is original. However, some parts of the standard libraries are
an adapted version of codes available under GPL license.

• Math library by Jesus Calvino-Fraga, jesusc@ieee.org

• strtod function by Michael Ringgaard (a modified version of this code is used by the stdio
library)

• Core algorithms for floating point support by Pipeline Associates, phw@motown.com
(fully rewritten in PIC18 assembler by Alain Gibaud).

19 How to contribute to the cpik project ?

cpik needs contributors !. Writing compiler, libraries, tutorials, pikdev support, WEB site,
etc. is an exciting but huge work for one person.

I think that this project is really viable. cpik code is not perfect but has many interesting
qualities, compared to other free compilers. So far, everything I write with it works (I cross my
fingers), so it should work for other people too.

If you are interseted by pushing a new compiler to free software, you can contribute in many
manners :

19.1 Feedbacks and suggestions

When cpik works for you or doesn’t, please send an email. Explain what you do with it, and why
it fit (or doesn’t fit) your needs.

54

19.2 Bug reports

If you detect a bug, please send me the most simple source code that provokes this bug. I (maybe)
will be able to analyse the generated code and fix the problem.

19.3 Documentation

Feel free to send fix or extension for the documentation. To native english speakers: help me to
write the documentation!

19.4 Libraries

cpik needs more libraries. All kinds of them. Some libraries are easy to write (stdlib/string)
but I have no time to do it. Some are really hard to code (USB support).

Basically, each PIC peripheral (timer, AN conversion, USB etc.) needs a library.

55

20 inc2h-v3

20.1 What is inc2h-v3 ?

inc2h-v3 is an utility that allows to make device-specific C headers from �.inc� files, and �.lkr� files.
These files describe the SFRs available for each device flavor, together with the bits or bit fields
they contain. The �.inc� and �.lkr� files are available in Microchip’s tools suite, and also in
gputils packages.

Because cpik provides a lot of ready-to-use header files, you will probably not need this utility.
However, you may have to use it when a new device appears.

20.2 How to build inc2h-v3 ?

1. Unpack the inc2h-v3.tar.gz archive

tar xzvf inc2h-v3.tar.gz

This command will create the following files in the current directory: main.cpp, processor.h,

processor.cpp, bf.h, bf.cpp.

2. Build the program (you need the g++ compiler from GNU)

g++ -Wall -O2 -o inc2h-v3 bf.cpp processor.cpp inc2h-v3.cpp

20.3 Command summary

You can use inc2h-v3 in two ways.

1. inc2h-v3 -locate

inc2h-v3 tries to discover where the �.inc� files are located on your hard disk, and displays
this (or these) location(s). This command is useful if you don’t know where the gputil tool
suite has been installed. Basically, this option just use the locate Unix command, so it may
fail.

2. inc2h-v3 [options] -all <directory>

inc2h-v3 processes all the �.inc� files located in the specified directory and creates the
corresponding header files in the current directory. Notice that this command ignores the
�.inc� files that do not correspond to a pic18 device.

Caution: This command is intended to be used with the files provided by the
gputils-1.0.0 package. It will not work if the �inc� and the �lkr� directories
are not located in the same directory.

The options allow to control what the generated files will contain:

• -struct

The description of device registers (SFRs) uses structs containing bit fields. This is the
standard way to manipulate the registers. The member names of these structs are fully
compatible with the identifiers used by Microchip’s C18 compiler.

• -define

The description of device registers is based on macro definitions. This mode is intended to
be used with the explicit bit field syntax allowed by cpik.

56

The default behavior is to create the two kind of information in the same file. Using only one
of this options has the (small) advantage of keeping the resulting files relatively small.

In order to understand the various ways to access the SFRs with cpik, I recommend to read
one of the �.h� files generated by inc2h-v3.

57

